
L.T.Mohammedia	Exercices	: Distribuer et Conv	ertir l'énergie pneun	natique	S.CHARI
Exercice 1 : Compléter les 4 actigra	mmes suivant	s:			
Actigramme d'un d	listributeur pne	eumatique	Actigramm	ne d'un moteur	électrique
Actigramme d'u	ın vérin pneun	natique	Actigramn	ne d'un relais é	Electrique
Exercice 2 : Un relais électrique est vous paraissent être les		2 parties principale	es. Lesquelles ? Co	ocher seulemen	t les réponses qui
un rotor			des effec	cteurs	
un distribut	teur		des cont	acts	
un électro-	aimant		un stator	r	
Exercice 3 : Compléter le tableau su	ıivant, relatif a	u schéma de la fig	gure 1 utilisant un r	elais 1T :	
État de l'interrupt	eur K	État du re Repos ou T		État de la Allumée (
ouvert		-			
fermé					
Exercice 4 :	K	Figure	/		
Compléter le tableau su	ıivant, relatif a			,	
État de l'interrupt	eur K	État du re	lais:	État de la	lampe L:

État de l'interrupteur K	État du relais : Repos ou Travail	État de la lampe L : <i>Allumée</i> ou <i>Éteinte</i>
ouvert		
fermé		

Exercice 5 : Compléter le tableau suivant, relatif au schéma de la figure 3 utilisant un relais 1R :

État de l'interrupteur K	État du relais : Repos ou Travail	État de la lampe L : <i>Allumée</i> ou <i>Éteinte</i>
ouvert		
fermé		

Exercice 6:

Compléter le schéma de la figure 4, utilisant un relais 1RT, afin qu'il réponde au fonctionnement donné dans le tableau suivant :

État de l'interrupteur K	État de la lampe ${f L}$:
ouvert	allumée
fermé	éteinte
K T T	R C c c c c c c c c c c c c c c c c c c

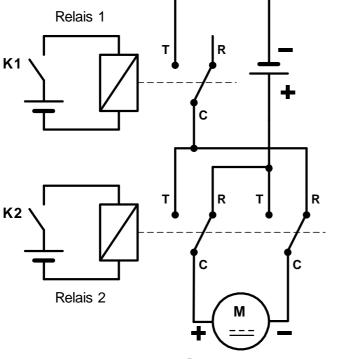
L.T.Mohammedia	Exercices : Distribuer et Convertir l'énergie pneumatique	S.CHARI

Exercice 7:

Un moteur électrique est constitué de 2 parties principales. Lesquelles ? Cocher seulement les réponses qui vous paraissent être les bonnes.

un rotor	des effecteurs
un distributeur	des contacts
des interrupteurs	un écran
un électro-aimant	un stator
des roues	des capteurs

Exercice 8:


Parmi les 12 propositions suivantes, cocher les grandes familles des moteurs électriques. Il vous appartient de déterminer le nombre de cases qu'il faut cocher.

moteur à essence	moteur à courant alternatif
moteur à hydrogène	moteur à manivelle
moteur à éolienne	moteur à courant faible
moteur à réaction	moteur à courant continu
moteur à explosion	moteur à courant nucléaire
moteur à combustion	moteur à eau

Exercice 9:

Compléter le tableau suivant, relatif au schéma de la figure 5 utilisant deux relais et un moteur. Pour l'état du moteur \mathbf{M} , vous indiquerez dans le tableau :

- A si le moteur est Arrêté
- 1 si le moteur est en marche et tourne dans le sens de rotation n°1
- 2 si le moteur est en marche et tourne dans le sens de rotation n°2

État de K1	O	F	O	F
État de K2	0	O	F	F
État du Relais 1 (T ou R)				
État du Relais 2 (T ou R)				
État de M (A, 1 ou 2)				

Figure 5

L.T.Mohammedia	Exercices: Distribuer et Convertir l'énergie pneumatique	S.CHARI

Exercice 10:

Dans un vérin simple effet à tige sortante :

- 1) Quelle est la conséquence de l'application de l'énergie pneumatique ?
-
- 2) Quel est le rôle du ressort de rappel ?
- 3) Ce type de vérin fournit un effort important dans un seul sens de déplacement. Lequel ?

.....

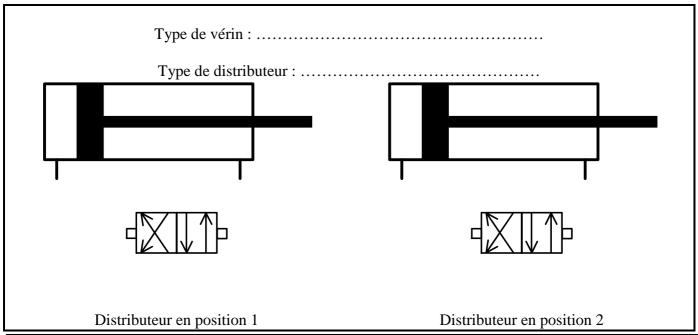
.....

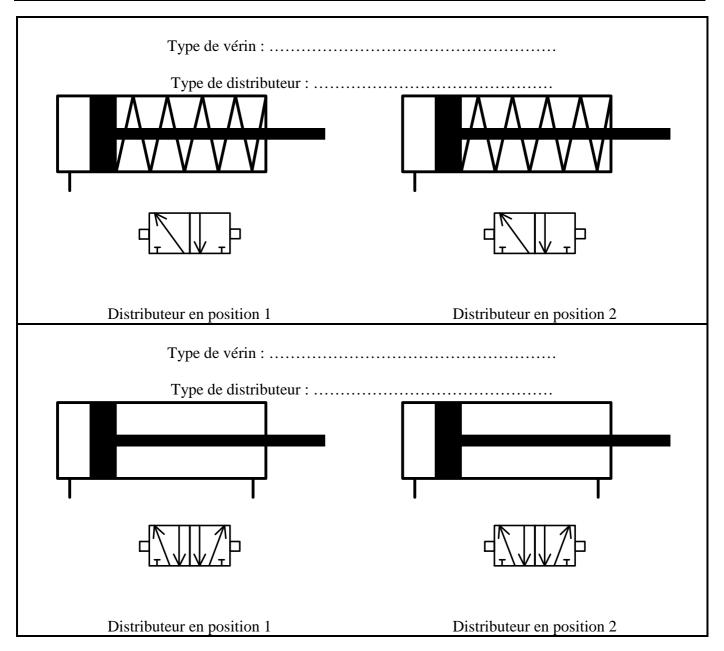
Exercice 11:

On étudie maintenant le vérin dont le symbole est donné ci-dessous :

- 1) Quelle est la conséquence de l'application de l'énergie pneumatique dans ce type de vérin ?
- 2) Quel est le rôle du ressort de rappel dans ce type de vérin ?
- 3) Ce type de vérin fournit un effort important dans un seul sens de déplacement. Lequel ?

.....


Exercice 12:


Dans un vérin double effet :

- 1) L'application de l'énergie pneumatique commande la tige dans quel sens de déplacement ?
- 2) Dans quel sens de déplacement ce type de vérin fournit-il l'effort le plus important ?
-
- 3) Pourquoi la force fournit par la tige n'est-elle pas la même dans les 2 sens de déplacement ?

Exercice 13:

Compléter les trois câblages de vérin, en utilisant les symboles pneumatiques appropriés, et en indiquant pour chaque câblage le *type de vérin*, le *type de distributeur*, ainsi que le *sens de déplacement de la tige* du vérin (en dessinant une flèche au dessus de l'extrémité de chaque tige).

Exercice 14:

Le Bar et le Pascal sont deux unités de mesure mesurant la même grandeur physique. Compléter le tableau ci dessous, faisant la correspondance entre ces deux unités :

Valeur en Bar,	Valeur en Pascal,
avec ou sans multiples ou sous-multiples	avec ou sans multiples ou sous-multiples
1 Bar	
1 mBar	
	1 Pa
	1 hPa
0,693 Bar	
	5 478 Pa

Exercice 15 : Quelle force peut exercer un vérin dont la surface du piston est 10 Cm ² et la pression dans la chambre de 10 bars ?	e
Exercice 16 : Quelle force peut exercer un vérin dont la surface du piston est 15 Cm ² et la pression dans la chambre de 6 bars ? (rappeler la formule ainsi que les unitées)	e
Exercice 17 Quelle force en sortie de tige, puis en rentrée de tige, peut fournir le vérin ci-contre alimenté avec une pression de 10 bars (détailler les calculs). F _{sortie tige} =	de tige
F _{rentrée tige} = Rentrée	de tige
6 bars, et que l'effort nécessaire à l'emboîtage est de 35 daN: Déterminer le diamètre minimal du vérin 1C permettant de réaliser cette opération. Remarque: les diamètres des vérins sont normalisés, parmi les diamètres de vérins sont normalisés, parmi les diamètres	Vérin 1C érateur ide vercle

Exercices : Distribuer et Convertir l'énergie pneumatique

L.T.Mohammedia

S.CHARI